

 April 2016 Page | 1

Content Creation Considerations

This document is intended to serve as an overview to the type of

considerations that are important to have when creating web
content in general. It is always important to align expectations with

your client as they may have individual requirements.

Few important clarifications for non-technical users:

HTML
HTML is the markup language used to define the structure of web

content, e.g. headers, paragraphs, links etc.

CSS
Cascading StyleSheets is the technology that enables the developer

to apply design to web elements. Can be referenced in a separate
file or inline with the HTML.

JS
JavaScript is the technology that provides interaction to web
content.

Introduction
There are three key aspects when creating new content for web

platform:
 Browser compatibility

 Performance
 Resolution

Below we will look into

Browser Compatibility
It’s important to set a baseline for where the content needs to
work. This decision will have great impact on content strategy. For

interactive content, as most presentations are, a graded support is
the recommended strategy but make sure to align expectations with

your client. It’s still necessary to make decisions what is supported

where though.

 April 2016 Page | 2

A graded support strategy means that you divide the browser

baseline into groups:
 A-grade browser: All features and design are supported

 C-grade browser: All content should be accessible, but not
interactivity and design

 X-grade browser: Unknown/rare browsers. Assumed to be
modern and capable

Some important considerations when choosing the baseline:

 Current global browser usage
 Current local browser usage

 Target audience
 Content type

Current Global Browser Usage
This is what’s normally used to create the general recommendations

that can be found on the web. You need to decide where the cut-off
is; should you for example support a browser with 5% or less of

user share?

Current Local Browser Usage
Often content is published for specific regions, e.g. Europe or Asia.

The browser usage statistics can vary greatly between areas and
this will then provide better support for the decision.

Target Audience
The baseline will naturally differ greatly if the content is intended
for use within a company or to the general public. It might also

differ if it’s only intended to professionals in a field or to any user.

Content Type
Content that is mostly about providing information (i.e. text,

images, videos, etc.) is generally easy to provide fallback solutions
to, e.g. if certain design elements are not supported in older

browsers.
Highly interactive content, i.e. web applications, are very difficult or

sometimes impossible to provide an alternative to.

Performance
There are two types of performance to consider: load and run-time.
The one that we can control the most is the load performance and

it’s what we refer to here.
Load performance is the time it takes from opening a presentation

until it’s fully interactive. The less code and assets you load initially,
the less time it will take before the content can be used.

 April 2016 Page | 3

Two major strategies are considered when optimizing load time:

 Size of resources referenced
 Number of network requests

Size
The overall size (usually referred to in kilobytes) can be controlled
by selective loading and code minification.

Selective Loading

It’s possible to load only what’s necessary to render the initial
content, and then load assets and code resources as they are

needed.

Minification

When creating code a lot of the size is made up of empty spaces

and comments in the code. There are many tools available today
that will remove all spaces and comments for production. To lower

the size even more it’s also possible to obfuscate the code, which
means that variables and other names used in the code are

replaced with single letters.
Minification and obfuscation should only be done for production

release as it’s virtually impossible to debug.

Requests
When accessing online content, each link to a file (e.g. CSS or JS)

will generate a network request to the server. The number of active
requests is limited and often they are loaded synchronously,

meaning that one needs to load before the other.
There are, again, two considerations to take:

 Order of loading

 Number of links

Order

In what order the files are loaded can have a great impact on the
perceived loading time. The order will not affect the actual time it

takes to load the presentation but it will affect when certain

features are available. The recommended practice is to first load
CSS (in the head of the document), then the initial content (HTML),

and lastly the JavaScript at the bottom of the document.
This will ensure that the styled content is visible as soon as

possible, i.e. before the JavaScript is loaded. As it’s usually the
JavaScript that makes up the bulk of the size, it can have major

impact of the perceived load time.

Number of Links

In order to reduce the number of network requests, the best

practice is to combine the CSS and JavaScript into as few files as

 April 2016 Page | 4

possible. Often it means that there is overall two network requests

(one for CSS and one for JS) plus whatever is needed for media
resources (videos, images, etc.) referenced in the initial content.

Resolution
Web content can today be viewed in a large number of devices,
from small phones to large TV-screens with 4K resolution. This pose

a difficult challenge for developers but it’s at the same time one of
the great strengths of web content.

Again, it’s important to beforehand have a clear idea how the
content is intended to be used in order to form a good strategy for

handling varying resolutions.

In general there are two strategies to consider when creating
content for multiple resolutions:

 Device/Resolution specific content

 Responsive Design

Device/Resolution specific content
With this strategy different content is prepared for different

devices/resolutions. Between 1 to 3 different outputs are generally
considered, but it can vary greatly per project. Examples are

mobile, web and large screens (TVs, projectors etc).
This strategy is usually considered when existing content need to be

adapted. However, even if it might seem to be a cheap solution
initially it usually ends up being more expensive than responsive

design as maintenance and updates (i.e. adding another
device/resolution) is more difficult.

Advantages

 Easier to optimize code sent to each device
 Usually cheaper in initially with existing content

Drawbacks

 Content often end up in different states for the various
devices

 Multiple code bases is more difficult and expensive to
maintain/update

 Harder to test
 Often end up adopting mechanisms of responsive design

anyway to serve slightly different designs to related devices
(e.g. normal-size vs big-size smartphones).

Responsive Design
Responsive Design is a terminology used to describe web content
that have been developed to adjust to various resolutions. With this

strategy, a few breakpoints based on the screen width/height are

 April 2016 Page | 5

chosen and then the content is developed to look and behave well

at any resolution. Examples of breakpoints (not recommendations,
just examples):

 Width of 480 pixels or less
 Width between 481 and 1024 pixels

 Width of 1025 pixels or more

The important point here is: same content is served to all
devices and it is therefore easier (less expensive) to update and

maintain. CSS can be used to hide content in any resolution if that
is desired (e.g. hide some interactivity that does not work well on a

mobile phone).
To use Responsive Design successfully it is paramount to

consider the breakpoints in the design phase! With existing
content that need to be adopted it should go back to the designers

so that they can update with designs for the new resolutions.

Advantages
 Better prepared for future devices/resolutions

 Cheaper to maintain and update
 Same content served to any user

 Works if browser is resized (means it’s also easier to test)

Drawbacks
 Challenging to adopt existing content

 More difficult to optimize size of CSS delivered to device

